Sampling medium side resistance to uptake of semivolatile organic compounds in passive air samplers.
نویسندگان
چکیده
Current theory of the uptake of semivolatile organic compounds in passive air samplers (PAS) assumes uniform chemical distribution and no kinetic resistance within the passive sampling media (PSM) such as polystyrene-divinylbenzene resin (XAD) and polyurethane foam (PUF). However, these assumptions have not been tested experimentally and are challenged by some recently reported observations. To test the assumptions, we performed kinetic uptake experiments indoors using cylindrical PSM that had been concentrically segmented into three layers. Both XAD and PUF were positioned in the same type of sampler housing to eliminate the variation caused by the different housing designs, which enabled us to quantify differences in uptake caused by the properties of the PSM. Duplicated XAD (PUF) samples were retrieved after being deployed for 0, 1 (0.5), 2 (1), 4 (2), 8 (4), 12 (8), and 24 (12) weeks. Upon retrieval, the PSM layers were separated and analyzed individually for PCBs. Passive sampling rates (R) were lower for heavier PCB homologues. Within a homologue group, R for XAD was higher than that for PUF, from which we infer that the design of the "cylindrical can" housing typically used for XAD PAS lowers the R compared to the "double bowl" shelter commonly used for PUF-disk PAS. Outer layers of the PSM sequestered much higher levels of PCBs than inner layers, indicative of a kinetic resistance to chemical transfer within the PSM. The effective diffusivities for chemical transfer within PSM were derived and were found negatively correlated with the partition coefficients between the PSM and air. Based on the results, we conclude that the PSM-side kinetic resistance should be considered when investigating factors influencing R and when deriving R based on the loss of depuration compounds.
منابع مشابه
Modeling the uptake of semivolatile organic compounds by passive air samplers: importance of mass transfer processes within the porous sampling media.
Air sampling based on diffusion of target molecules from the atmospheric gas phase to passive sampling media (PSMs) is currently modeled using the two-film approach. Originally developed to describe chemical exchange between air and water, it assumes a uniform chemical distribution in the bulk phases on either side of the interfacial films. Although such an assumption may be satisfied when mode...
متن کاملSAMPLING, CLEAN-UP AND SEPARATION Evaluation of performance reference compounds in PUF passive air samplers at different wind speeds
ORGANOHALOGEN COMPOUNDS – Volume 66 (2004) 138 Introduction Polyurethane foam (PUF) samplers are being used in an increasing number of studies to passively sample semivolatile organic compounds (SOCs) in the atmosphere (e.g. 1, ). However, recent research shows that the uptake and loss kinetics of passive air samplers is influenced by changes in wind speed . According to theory, the rate of che...
متن کاملInfluence of sampler configuration on the uptake kinetics of a passive air sampler.
Passive air samplers (PAS) are simple and cost-effective tools to monitor semivolatile organic compounds in air. Chemical uptake occurs by molecular diffusion from ambient air to a passive sampling medium (PSM). Previous calibration studies indicate that even for the same type of PAS, passive air sampling rates (R, m(3)(air)/d) can be highly variable due to the influence of a number of factors....
متن کاملExploring the role of the sampler housing in limiting uptake of semivolatile organic compounds in passive air samplers.
Passive air samplers (PASs) are simple, versatile devices that are increasingly used to determine the concentrations of semivolatile organic compounds (SVOCs) in the atmosphere. Using PAS and interpreting PAS-derived data with confidence requires a detailed understanding of the factors that control the uptake kinetics. A number of experiments were aimed at clarifying the role that the housing h...
متن کاملPassive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types.
This article describes laboratory testing of four passive diffusive samplers for assessing indoor air concentrations of volatile organic compounds (VOCs), including SKC Ultra II, Radiello®, Waterloo Membrane Sampler (WMS) and Automated Thermal Desorption (ATD) tubes with two different sorbents (Tenax TA and Carbopack B). The testing included 10 VOCs (including chlorinated ethenes, ethanes, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 45 24 شماره
صفحات -
تاریخ انتشار 2011